

Marks

/10

/17

/14

/15

/14

/17

Q

MC

11

12

13

14

15

2022 YEAR 12

Mathematics Extension 2

Trial HSC Examination

Date: Monday 8th August, 2022

		16	/13
		Total	/100
General	Reading time – 10 minutes		
Instructions:	 Working time – 3 hours 		
	 Write using blue or black pen 		
	 NESA approved calculators may be used 		
	 Show relevant mathematical reasoning 		
	and/or calculations		
	 No white-out may be used 		
Total Marks:	Section I - 10 marks		
100	 Allow about 15 minutes for this section 		
	Section II - 90 marks		
	 Allow about 2 hours and 45 minutes for this section 		
This question examination r	paper must not be removed from the oom.		
This assassme	ant task constitutes 30% of the course		
11113 0335351110			

Section I

10 marks

Allow about 15 minutes for this section

Use the multiple-choice sheet for Questions 1–10

1 Consider the statement:

"If $2^n - 1$ is a prime, then *n* is a prime."

The contrapositive of the statement would be written as:

- (A) If $2^n 1$ is not a prime, then *n* is not a prime.
- (B) If *n* is not a prime, then $2^n 1$ is a prime.
- (C) If *n* is not a prime, then $2^n 1$ is not a prime.
- (D) If $2^n 1$ is a prime, then *n* is not a prime.
- 2 The negation of the statement " \exists a real number *x* such that $x^2 = 9$ or x > 2" is best given by:
 - (A) \forall real numbers $x, x^2 \neq 9$ or $x \leq 2$
 - (B) \exists a real number $x, x^2 \neq 9$ and $x \leq 2$
 - (C) \exists a real number $x, x^2 \neq 9$ or $x \leq 2$
 - (D) \forall real numbers $x, x^2 \neq 9$ and $x \leq 2$

3 If
$$z = 2e^{\frac{i\pi}{6}}$$
, then $\operatorname{Re}(z^3 - z)$ is:

- (A) $-\sqrt{3}$
- (B) $\sqrt{3}$
- (C) $8 \sqrt{3}$
- (D) $7\frac{1}{2}$

4 A particle moves in a straight line with a distance of x metres from the origin and a speed of v metres per second. It is given that $v = \sqrt{12 - x^2}$ and the initial displacement is x = 3. Which of the following is an expression for t?

(A)
$$24x + 2x^3 - 126$$

(B)
$$6\sin^{-1}\left(\frac{x}{2\sqrt{3}}\right) + \frac{x}{2}\sqrt{12 - x^2} - 2\pi - \frac{3\sqrt{3}}{2}$$

(C)
$$\frac{\sin^{-1} x - \sin^{-1} 3}{2\sqrt{3}}$$

(D)
$$\sin^{-1}\frac{x}{2\sqrt{3}} - \frac{\pi}{3}$$

5 Given that $z - \sqrt[4]{-i} = 0$, then z could be:

(A) *i*

(B)
$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$

(C)
$$\cos\frac{5\pi}{8} - i\sin\frac{5\pi}{8}$$

(D)
$$e^{\frac{i\pi}{8}}$$

6 By graphical means or otherwise, which integral has the smallest value?

(A)
$$\int_{0}^{\frac{\pi}{6}} \sin^{2} x \, dx$$
(B)
$$\int_{0}^{\frac{\pi}{6}} dx \, dx$$

$$\int_0^{\overline{6}} (1 - \sin x) dx$$

(C)
$$\int_0^{\frac{\pi}{6}} (1-\sin^2 x) dx$$

(D)
$$\int_0^{\frac{\pi}{6}} (1 - \sin x)^2 dx$$

7 Let $a = 14i + 4j + \alpha^2 k$ and $b = -2i - 2j + \alpha k$, where α is a real constant.

If the length of the projection of a in the direction of b is $\frac{14}{\sqrt{3}}$, then α equals:

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- 8 A particle is projected from level ground at an angle to the horizontal and experiences a resistive force opposed to the direction of motion.

Which of the following statements is FALSE?

- (A) The magnitude of the angle of impact is greater than the magnitude of the angle of projection.
- (B) The magnitude of the horizontal component of velocity is larger during the ascent of the particle than the descent.
- (C) The range of the particle would be greater if it had the same velocity and angle of projection but a smaller mass.
- (D) More than half of the horizontal range is travelled during the first half of the flight time.

9 The integral

$$\int_{1}^{3} \frac{\cos^{3}\left(\frac{\pi}{8}x\right)}{x(4-x)} dx$$

is equivalent to:

(A)
$$\int_{1}^{3} \frac{\sin^{3}\left(\frac{\pi}{8}u\right)}{u(4-u)} du$$

(B)
$$\int_{1}^{3} \frac{\sin^{3}\left(\frac{\pi}{8}u\right)}{u(u-4)} du$$

(C)
$$\int_{1}^{3} \frac{\cos^{3}\left(-\frac{\pi}{8}u\right)}{u(u-4)} du$$

(D)
$$\int_{1}^{3} \frac{\sin^{3}\left(-\frac{\pi}{8}u\right)}{u(4-u)} du$$

10 The diagrams below show graphs in a two-dimensional plane.

When viewed in the xy, xz or yz planes, which of the following diagrams is a possible view of the curve defined by the vector r below?

$$r_{\sim} = (\cos 2t)i_{\sim} + (\cos t)j_{\sim} + (\sin 2t)k_{\sim}$$

End of Section I

Section II

90 marks

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11-16, your response should include relevant mathematical reasoning and/or calculations.

Question 11 (17 Marks) Use the Question 11 Writing Booklet.

(a) Consider the complex numbers $z = \sqrt{2}(1 + i\sqrt{3})$ and $w = \sqrt{6}(1 + i)$

(i) Find
$$z - w$$
. 1

- (ii) Express $\frac{z}{w}$ in the form a + ib. 1
- (iii) Express z and w in modulus-argument form. 1
- (iv) Hence, find the exact value of $\cos \frac{\pi}{12}$. 2

Find: (b) (i)

 $\int x \cos(x^2) dx.$

(ii) Find:

(iii) Find:

$$\int \frac{1}{4+5\cos x} dx$$

 $\int \frac{5}{(x-1)(x^2+1)} dx$

Consider the three points A(4, 1, -1), B(5, 2, 0) and C(-1, -1, 2). (c)

(i)	Show that the points are not collinear.	1
(ii)	Find the size of $\angle ABC$ to the nearest minute.	2

(iii) Hence, or otherwise, find the area of the triangle $\triangle ABC$ to 3 decimal places. 1

Examination continues on next page

3

Question 12 (14 Marks) Use the Question 12 Writing Booklet.

(a) The rectangular prism shown below is produced by the origin and the point P(a, b, c) with all sides either within the coordinate planes or parallel to them.

The main diagonals are represented by the vectors u and v as shown, intersecting at point Q.

- (i) Find expressions for u and v in terms of a, b and c. 1
- (ii) Show that u and v are perpendicular if and only if $a^2 + b^2 = c^2$. 2
- (iii) Find a point Q such that the main diagonals are perpendicular. 1
- (b) Evaluate the following:

$$\int_{-\frac{5}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{x^2 + 2\sqrt{3}x + 7} dx$$

- (c) The velocity of a particle is given by $\dot{x} = x^3 2x$ metres per second. What is the acceleration of the particle when x = 1?
- (d) Prove that for $a, b \in \mathbb{Z}$, if a divides b with no remainder then a^2 divides b^2 with no remainder. 2
- (e) Two blocks are connected by an inextensible string passing over a frictionless pulley. Block A has mass m kg and lies on a smooth horizontal surface. It is connected to Block B with mass 4m kg that hangs vertically at the other end of the string. Both blocks are initially at rest.

The system is set in motion and let x be the distance travelled to the right by Block A after t seconds.

- (i) Construct free body diagrams to show the forces acting upon Blocks *A* and *B*. 1
- (ii) Find an expression for x in terms of g and t.

2

2

Question 13 (15 Marks) Use the Question 13 Writing Booklet.

(a) (i) On an argand diagram, sketch the region defined by
$$\frac{\pi}{4} \le \arg\left(\frac{z-1}{z+i}\right) \le \pi$$
. 3

(ii) Find the minimum and maximum values of
$$|z|$$
. 2

(b) Prove
$$|a^2 - ab| + |ab - b^2| \ge (a + b)(a - b)$$
 for $a > b > 0$. 2

(c) Consider the two spheres with equations given below.

$$\begin{vmatrix} r - \begin{pmatrix} 3 \\ -4 \\ 3 \end{vmatrix} = 5$$
$$\begin{vmatrix} r - \begin{pmatrix} -7 \\ 7 \\ 1 \end{vmatrix} = 10$$

2

- (ii) Find the coordinates of the point of contact.
- (d) Prove that the sum of two integers is even if and only if they have the same parity. 3That is, both integers are either both odd or both even.
- (e) Use integration by parts to find:

$$\int e^x \sin 2x \, dx$$

Question 14 (14 Marks) Use the Question 14 Writing Booklet.

- (a) A rocket with initial velocity $u ms^{-1}$ is projected vertically upwards from the surface of a planet. The acceleration due to gravity is $\frac{k}{x^4} ms^{-2}$ towards the centre of the planet, where x is the distance in metres from the centre of the planet and $k \in \mathbb{R}^+$. Assume air resistance is negligible.
 - (i) Show that $k = gr^4$, where r is the radius of the planet in metres and $g ms^{-2}$ is the 1 acceleration due to gravity at the surface of the planet.
 - (ii) Given that the speed of the rocket at a distance x metres from the centre is $v ms^{-1}$, 2 show that:

$$v^2 = u^2 + \frac{2k}{3} \left(\frac{1}{x^3} - \frac{1}{r^3} \right)$$

- (iii) Give an expression for the escape velocity in terms of g and r. 2
- (iv) If $u^2 = \frac{2gr}{3}$, find the time taken for the rocket to travel to a point 3r metres above 2 the planet's surface. Give your answer in terms of g and r.
- (v) If $u^2 = \frac{gr}{3}$, find the distance travelled before the rocket returns to the planet. Give 2 your answer in terms of r.

(b) Let:

$$I_n = \int_1^e x(\ln x)^n \, dx$$

where
$$n = 0, 1, 2, 3, ...$$

Using integration by parts, show that:

$$I_n = \frac{e^2}{2} - \frac{n}{2}I_{n-1}, \qquad n = 1, 2, 3, ...$$

(c) The area bounded by the curve $y = \sqrt{x}(\ln x), x \ge 1$, the *x*-axis and the line x = e is rotated about the *x*-axis through 2π radians. Find the exact value of the volume of the solid formed.

Question 15 (17 Marks) Use the Question 15 Writing Booklet.

(a) Let the points *E*, *F*, *G* and *H* have corresponding position vectors from some origin *O* given below:

$$\overrightarrow{OE} = \begin{pmatrix} -2\\4\\3 \end{pmatrix}, \overrightarrow{OF} = \begin{pmatrix} 6\\-4\\-5 \end{pmatrix}, \overrightarrow{OG} = \begin{pmatrix} 1\\-2\\-2 \end{pmatrix} \text{ and } \overrightarrow{OH} = \begin{pmatrix} 0\\0\\-1 \end{pmatrix}$$

(i) Show that the line:

$$m = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

describes points that are equidistant from *E* and *F*, for some real constant α .

(ii) The line GH has the equation:

$$\underset{\sim}{n} = \begin{pmatrix} 1\\ -2\\ -2 \end{pmatrix} + \beta \begin{pmatrix} -1\\ 2\\ 1 \end{pmatrix}$$

for some real constant β .

(You do not need to prove this).

Show that the lines m and n are skew.

(iii) Hence, find shortest distance between the lines.

Examination continues on next page

3

2

(b) A submarine of mass m is propelled in a straight line underwater by a force F. The water exerts a resistive force of magnitude kv against the direction of motion of the submarine, where v is the submarine's speed and k is a constant. Initially the submarine starts from rest.

(i) Show that the submarine reaches half its limiting speed when
$$t = \frac{m}{k} \ln 2$$
. 3

- (ii) When the submarine reaches the speed $\frac{F}{2k}$, the captain decides to reverse the engines so that the propelling force *F* is now acting backwards to slow the ship down. Show that it would cover a further distance of $\frac{mF}{2k^2} \left(1 2\ln\frac{3}{2}\right)$ before coming to rest.
- (c) An integer N > 91 is divisible by 13 if when the unit digit is multiplied by 9 and 3 subtracted from the rest of the number, the outcome is also divisible by 13. For example, 858 is divisible by 13 as $85 8 \times 9 = 13$, which is divisible by 13.

Prove this divisibility theorem for the general case of a four digit number with digits *abcd*, noting that the place value of the leading digit '*a*' is $1000 \times a$.

Question 16 (13 Marks) Use the Question 16 Writing Booklet.

(a) (i) Show that for $z = \cos \theta + i \sin \theta$:

$$z^n + (\bar{z})^n = 2\cos(n\theta)$$

and

$$z^n - (\bar{z})^n = 2i\sin(n\theta)$$

(ii) Show that:

$$(\cot \theta + i)^n - (\cot \theta - i)^n = \frac{2i\sin(n\theta)}{\sin^n \theta}$$

(iii) Show that the roots of the equation $(x + i)^n - (x - i)^n = 0$ are:

$$\cot\frac{\pi}{n}, \cot\frac{2\pi}{n}, \cot\frac{3\pi}{n}, \dots, \cot\frac{(n-1)\pi}{n}$$

$$(x+i)^n - (x-i)^n = 2i\left(\binom{n}{1}x^{n-1} - \binom{n}{3}x^{n-3} + \binom{n}{5}x^{n-5} - \binom{n}{7}x^{n-7}\dots\right)$$

(v) Hence, show that:

$$\cot^2 \frac{\pi}{n} + \cot^2 \frac{2\pi}{n} + \cot^2 \frac{3\pi}{n} + \dots + \cot^2 \frac{(n-1)\pi}{n} = \frac{(n-1)(n-2)}{3}$$

Examination continues on next page

2

2

3

1

(b) A projectile is launched with velocity $v \text{ ms}^{-1}$ at an angle of α to the horizontal up an inclined plane of inclination β , where $\alpha > \beta$.

The equations of motion of the projectile are given as:

$$r_{\sim} = \begin{pmatrix} vt\cos\alpha\\ vt\sin\alpha - \frac{1}{2}gt^2 \end{pmatrix}$$

(Do not prove this)

(i) Show that the path of the projectile is given as:

$$y = x \tan \alpha - \frac{g x^2 \sec^2 \alpha}{2v^2}$$

(ii) Prove that the projectile will hit the surface of the plane at a right angle when: **3**

$$\tan \alpha = \cot \beta + 2 \tan \beta$$

End of Examination

Q	Worked Solutions	Marking Criteria	Marker's Feedback
1	C		
2	D		
3	A		
4	D		
5	C		
6	A		
7	В		
8	C		
9	A		
10	D		
11ai	$z - w = \sqrt{2} - \sqrt{6} + (\sqrt{6} - \sqrt{6})i$	1 mark answer or	
	$=\sqrt{2}-\sqrt{6}$	equivalent	
ii	$\frac{z}{w} = \frac{\sqrt{2} + \sqrt{6}i}{\sqrt{6} + \sqrt{6}i} \times \frac{\sqrt{6} - \sqrt{6}i}{\sqrt{6} - \sqrt{6}i}$ $= \frac{\sqrt{12} + 6 + (6 - \sqrt{12})i}{6 + 6}$ $= \frac{6 + 2\sqrt{3}}{12} + \frac{6 - 2\sqrt{3}}{12}i$ $= \frac{3 + \sqrt{3}}{6} + \frac{3 - \sqrt{3}}{6}i$	1 mark answer or equivalent	Too many marks lost here for careless calculation. Check your work so you don't lose easy marks.
iii	$z = 2\sqrt{2}cis\left(\frac{\pi}{3}\right)$ $w = 2\sqrt{3}cis\left(\frac{\pi}{4}\right)$	1 mark both answers or equivalent	
iv	$\frac{z}{w} = \frac{2\sqrt{2}cis\left(\frac{\pi}{3}\right)}{2\sqrt{3}cis\left(\frac{\pi}{4}\right)}$ $= \frac{\sqrt{2}}{\sqrt{3}}cis\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$ $= \frac{\sqrt{6}}{3}cis\left(\frac{\pi}{12}\right)$ $= \frac{3+\sqrt{3}}{6} + \frac{3-\sqrt{3}}{6}i \text{ from part (ii)}$	1 mark for dividing 1 mark for equating real components and finding a result	

2022 KHS Ext 2 Task 4 Trial – Solutions, Marking Criteria and Marker's Feedback

	Equating real components:		
	$\frac{\sqrt{6}}{3}\cos\frac{\pi}{12} = \frac{3+\sqrt{3}}{6}$ $\cos\frac{\pi}{12} = \frac{3+\sqrt{3}}{2\sqrt{6}}$ $= \frac{1+\sqrt{3}}{2\sqrt{2}}$ $= \frac{\sqrt{2}+\sqrt{6}}{4}$		
bi	$I = \int x \cos(x^2) dx$	1 mark for integrating	Reverse chain rule.
	$=\frac{1}{2}\int_{-\infty}^{-\infty} 2x\cos(x^2) dx$ $=\frac{1}{2}\sin(x^2) + c$	1 mark for correct coefficient and constant of integration	
ii	Let $t = \tan \frac{x}{2}$	1 mark for correctly	Some students factorised "2" before partial fractions BUT also
	$dx = \frac{2}{1+t^2}dt$		included it in the calculation of
	$I = \int \frac{1}{4+5\left(\frac{1-t^2}{1+t^2}\right)} \times \frac{2}{1+t^2} dt$	1 mark for partial fractions	partial fractions.
	$= 2 \int \frac{1}{1} dt$	1 mark for correct	Quite a few did not remember
	$\int 4 + 4t^{2} + 5 - 5t^{2}$ $= 2 \int \frac{1}{9 - t^{2}} dt$	integrai	REMEMBER: If you are using sub for integral, sub back!
	$=2\int \frac{1}{(3-t)(3+t)}dt$		This is a good example where
	$= 2 \int \frac{1}{6} \left(\frac{1}{3-t} + \frac{1}{3+t} \right) dt \text{ (partial fractions)}$		the absolute value of natural log
	$=\frac{1}{3}(-\ln 3-t +\ln 3+t)+c$		
	$=\frac{1}{3}\ln\left \frac{3+t}{3-t}\right +c$		
	$=\frac{1}{3}\ln\left(\frac{3+\tan\frac{x}{2}}{3-\tan\frac{x}{2}}\right)+c$		

iii	$I = 5 \int \frac{1}{(x-1)(x^2+1)} dx$ Let $\frac{1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+}{x^2+1}$ $1 = Ax^2 + A + Bx^2 + Cx - Bx - C$ $1 = (A+B)x^2 + (C-B)x + A - C$ A + B = 0 C - B = 0 A - C = 1 $A = \frac{1}{2}$ $B = -\frac{1}{2}$ $C = -\frac{1}{2}$ $I = \frac{5}{2} \int \frac{1}{x-1} - \frac{x+1}{x^2+1} dx$ $= \frac{5}{2} \int \frac{1}{x-1} - \frac{x}{x^2+1} - \frac{1}{x^2+1} dx$	 1 mark for correct partial fractions 1 mark for integral to two logarithms 1 mark for integral to inverse tan 	
ci	$= \frac{1}{2} \left(\frac{1}{2} \left(\frac{4}{2} \right) - \frac{5}{2} \right)$	1 mark for showing	You need to SHOW the
	$BA = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ $= \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$ $\overrightarrow{BC} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix}$ $= \begin{pmatrix} -6 \\ -3 \\ 2 \end{pmatrix}$ Assume the points are collinear, i.e. $\overrightarrow{BA} = \lambda \overrightarrow{BC}$	contradiction or equivalent method	contradiction rather than just state it. Remember, one of the topics is specifically on PROOF so don't just assume it is obvious. The mark was paid generously in this instance, however, if this was a 2 mark question not many students would have received full marks.
	Considering <i>z</i> components: $-1 = \lambda \times 2$		
	$\lambda = -\frac{1}{2}$		
	Considering y components		

	$-1 = \lambda \times -3$		
	$\lambda = \frac{1}{2}$		
	3 1		
	$\neq -\frac{1}{2}$		
	This is a contradiction and hence the assumption must be false, and the points are not collinear.		
ii	$\overrightarrow{BA} \cdot \overrightarrow{BC} = 6 + 3 - 2$	1 mark for dot product	Tail to tail for angle between.
	= 7	1 mark for finding angle	
	$ BA = \sqrt{1+1} + 1$		
	$=\sqrt{3}$		
	$\left BC \right = \sqrt{36 + 9} + 4$		
	$=$ $\xrightarrow{7}$ \rightarrow		
	$\cos \theta = \frac{BA \cdot BC}{BA \cdot BC}$		
	$\left \overrightarrow{BA} \right \left \overrightarrow{BC} \right $		
	$=\frac{7}{}$		
	$7\sqrt{3}$		
	$\theta = \cos^{-1} \frac{1}{\sqrt{2}}$		
	$= 54^{\circ}44'$		
iii	$Area = \frac{1}{ BA } BC \sin 54^{\circ}44'$	1 mark for area	Surprising number of responses
	2 211 20 2000111	ECF allowed	had the formula wrong. It is on
	– 1 .750 u		maths material is fundamental
			here!
12ai	$\begin{pmatrix} a \\ c \end{pmatrix} \begin{pmatrix} 0 \\ c \end{pmatrix}$	1 mark for both correct	
	$u = \begin{pmatrix} 0 \\ c \end{pmatrix} - \begin{pmatrix} b \\ 0 \end{pmatrix}$	vectors	
	$\begin{pmatrix} a \\ \end{pmatrix}$		
	$=\begin{pmatrix} -b \\ c \end{pmatrix}$		
	$\begin{pmatrix} 0 \end{pmatrix}^{c} \begin{pmatrix} a \\ a \end{pmatrix}$		
	$\underbrace{v}_{\sim} = \left(\begin{array}{c} b \\ c \end{array} \right) - \left(\begin{array}{c} 0 \\ c \end{array} \right)$		
	$\left \frac{c}{a} \right ^{0}$		
	$=\begin{pmatrix} b\\ c \end{pmatrix}$		

· · ·			
11	$u \cdot v = 0$	1 mark for applying dot	
	$a \sim (-a)$	product	
	$\begin{pmatrix} -h \end{pmatrix} \cdot \begin{pmatrix} h \end{pmatrix} = 0$	1 mark for simplifying	
	$a^{2} + b^{2} + a^{2} = 0$		
	-a - b + c = 0		
	$a^2 + b^2 = c^2$		
iii	<i>a</i> , <i>b</i> and <i>c</i> must satisfy a Pythagorean triad, e.g.	1 mark for any correct	
	a = 3	point where coordinates	
	b - 4	are half of Dythagoroan	
		are han of Fythagorean	
	c = 5	triad	
	$\overrightarrow{\alpha} \overrightarrow{\alpha} = \overrightarrow{1} \overrightarrow{\alpha} \overrightarrow{p}$		
	$OQ = \frac{1}{2}OF$		
	$1^{\overline{3}}$		
	$= \frac{1}{2} (4)$		
	$2 \left(\frac{1}{5} \right)$		
	$\left(\frac{1}{2}\right)$		
	$\left(\frac{5}{2}\right)$		
	2/		
	Hence point Q could be $\left(\frac{3}{2}, 2, \frac{5}{2}\right)$		
b	$\int \sqrt{3} 1$.	1 mark for for factorising	
	$I = \int_{-\infty}^{\infty} \frac{dx}{dx}$	denominator	
	$\int \frac{J - \sqrt{3}}{\sqrt{3}} (x + \sqrt{3}) + 2^2$		
	$-\sqrt{3}$	1 mark for integrating to	
	$1 \int \frac{1}{1-x} $		
	$=\frac{1}{2} \tan^{-1} \frac{1}{2}$	Inverse tan	
	$-L$ $-J = -\frac{1}{\sqrt{3}}$		
	$1 \left(1 - 1 \right)$	1 mark for correctly	
	$= \frac{1}{2} (\tan^{-1} \sqrt{3} - \tan^{-1} (-\frac{1}{\sqrt{2}}))$	applying boundaries and	
	$2(\sqrt{\sqrt{3}})$	simplifying	
	$-\frac{1}{2}\left(\frac{\pi}{2}+\frac{\pi}{2}\right)$	simpinying	
	$-\frac{1}{2}(\frac{1}{3},\frac{1}{6})$		
	_ π		
	$-\frac{1}{4}$		
с	$\dot{x} = v = x^3 - 2x$	1 mark for taking	
	dv	derivative of v	
	$\frac{1}{dx} = 3x^2 - 2$		
	du du		
	$\ddot{x} = a = v \frac{dv}{dx} = (x^3 - 2x)(3x^2 - 2)$	1 mark for finding result	
	dx dx		
	When $x = 1$		
	a = (1-2)(3-2)		

	$= -1 m s^{-1}$		
d	a divides b implies $b = na$ for some integer n. Then $b^2 = b \times b = (na)(na)$ by our proposition $= n^2(a^2)$ Rearranging we get: $\frac{b^2}{a^2} = n^2$ That is, a^2 divides b^2	 1 mark for establishing proposition and algebra towards b² 2 marks for expressing result and conclusion 	
ei	Diagrams	1 mark for two correct diagrams including tension, force due to gravity and normal force	Many forgot tension forces
ii	$(m + 4m)a = 4mg$ $a = \frac{4}{5}g$ $v = \frac{4}{5}gt$ $x = \frac{2}{5}gt^{2}$	1 mark for correctly defining system of motion 1 mark for integrating correctly w.r.t. time	
13ai	$ \begin{array}{c} 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ $	 1 mark interval, including excluded points 1 mark for outer bound (not intercepts) 1 mark for region 	Poorly done Intercepts often missed and some not shaded
ii	$ z _{min} = 0$	1 mark for min	

	Angle at circumference is $\frac{\pi}{4}$, hence angle at centre is a right angle. This places the centre at the	1 mark for max,	
	origin, and gives the circle a radius of 1.	providing reasoning for	
	$ z _{max} = 1$	centre	
b	$ a^2 - ab + ab - b^2 \ge a^2 - ab + ab - b^2 $ by the triangle inequality	1 mark correct use of	Many used the result
	$ a^2 - ab + ab - b^2 \ge a^2 - b^2 $	the triangle inequality	
	$ a^2 - ab + ab - b^2 \ge (a + b)(a - b) $	2 marks correctly	
	And as $a > b > 0$ we know:	resolving answer given	
	a + b > 0 and $a - b > 0$, so	a > b > 0	
	$ a^{2} - ab + ab - b^{2} \ge (a + b)(a - b)$		
ci	For a single point of contact, the distance between centres must equal the sum of the radii	1 mark for proof with	Done well
	$ -7\rangle = 1/-7\rangle$	equivalent reasoning	
	Distance between centres = $\begin{pmatrix} 7 \\ 1 \end{pmatrix} - \begin{pmatrix} -4 \\ 3 \end{pmatrix}$	equivalent reasoning	
	$= \begin{vmatrix} \begin{pmatrix} -10\\ 11 \end{vmatrix}$		
	(-2)		
	$=\sqrt{100+121+4}$		
	$= \sqrt{225}$ = 15		
	= 13 = 10 + 5		
	= sum of the radii		
ii	Let the centres be $C_1(3, -4, 3)$ and $C_2(-7, 7, 1)$ such that:	1 mark for consider the	Poorly done
	\overrightarrow{a} \overrightarrow{c} \overrightarrow{c} \overrightarrow{c}	vector between centres	Often used projection poorly
	$\mathcal{L}_1\mathcal{L}_2 = \begin{pmatrix} 11\\ 2 \end{pmatrix}$		
	Point of contact occurs at C_1 shifted by the vector $\frac{5}{15} \frac{-2}{C_1 C_2}$	1 mark for finding coordinates	
	$=\frac{1}{3}\binom{-10}{11}$		
	$= \begin{pmatrix} -\frac{10}{3} \\ \frac{11}{2} \end{pmatrix}$		
	$\begin{pmatrix} 3\\ -\frac{2}{3} \end{pmatrix}$		
	Hence, the point of contact occurs at $\left(-\frac{1}{3},-\frac{1}{3},\frac{7}{3}\right)$		

d	If two numbers are both even then they can be expressed as $a = 2m$ and $b = 2n$	1 mark for a logical and	If mistakes were made, it was
	for <i>m</i> , <i>n</i> integer.	reasoned plan, like cases	not checking the different parity
		2 marks for a logical and	case for iff.
	Hence $a + b = 2m + 2n = 2(m + n)$ which is even	reasoned plan correctly	
		executed by missing a	
	If the two numbers are odd, the can be expressed as $a = 2m + 1$ and $b = 2n + 1$ for m, n integer.	logical step, like the odd	
		plus even case	
	Hence $a + b = 2m + 1 + 2n + 1 = 2(m + n + 1)$ which is even.	3 marks a complete and	
		correct proof with a	
	However, if the integers do not have same parity they can be expressed as $a = 2m$ and $b = 2n + 1$	conclusion.	
	Hence $a + b = 2m + 2n + 1 = 2(m + n) + 1$ which is odd.		
	And so the sum of two integers is even iff they have the same parity.		
e	$I = \int e^x \sin 2x dx$	1 mark for correct first	Done well
) C	application of	
	$= e^x \sin 2x - 2$ $e^x \cos 2x dx$	integration by parts	
	$r \cdot \rho = \rho(r - \rho - \rho(r + \rho + \rho))$	1 mark for recult	
	$= e^{x} \sin 2x - 2(e^{x} \cos 2x + 2)e^{x} \sin 2x dx)$	I Mark for result	
	$= e^x(\sin 2x - 2\cos 2x) - 4I$		
	$5I = e^x(\sin 2x - 2\cos 2x) + C$		
	$I = \frac{e^x(\sin 2x - 2\cos 2x)}{1 + C}$		
	$I = \frac{1}{5}$		
14ai	$ma = \frac{mk}{m}$	1 mark for defining	$g = \frac{\kappa}{r^4}$ is untrue. This implies g
	x^4	system of motion and	is variable instead of a constant.
	$k = ax^{T}$	substituting	
	when $x = r, a = g$		
	K - gI	1 mark for conarating to	Caroful with pagatives when
"	$a = v \frac{dv}{dv} = -\frac{gr}{v^4}$	integrate wirt y	defining the system
	$\int u^{\nu} dx dx^{+}$		
	$v dv = -k \left \begin{array}{c} x^{-4} dx \end{array} \right $		
	$\int u J_r$ 1 k	1 mark for integrating	
	$\frac{1}{2}[v^2]_u^v = \frac{1}{3}[x^{-3}]_r^x$	using bounds or finding	
	$1, \frac{2}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}$	constant and simplifying	
	$\frac{1}{2}(v^2 - u^2) = \frac{1}{3}(\frac{1}{x^3} - \frac{1}{r^3})$		
	$\frac{1}{2k(1-1)}$		
	$v^{-} = u^{-} + \frac{1}{3} \left(\frac{1}{x^{3}} - \frac{1}{r^{3}} \right)$		

iii	$v^2 = u^2 + \frac{2k}{3} \left(\frac{1}{x^3} - \frac{1}{r^3} \right)$	1 mark for applying $\frac{1}{x^3} \rightarrow 0$	Some getting $x \to \infty$ Barely any taking $v^2 > 0$
	As $x \to \infty$, $\frac{1}{x^3} \to 0$ $v^2 = u^2 - \frac{2k}{2}$	1 mark for finding result	
	For $v^2 > 0$ $2k$	with working	
	$u^{2} > \frac{3r^{3}}{3r^{3}}$ $u > \sqrt{\frac{2k}{2}}, u > 0$		
	Therefore, as $k = gr^4$, escape velocity is when:		
	$u > \sqrt{\frac{2gr}{3}} ms^{-1}$		
iv	$v^{2} = \frac{2gr}{3} + \frac{2k}{3} \left(\frac{1}{x^{3}} - \frac{1}{r^{3}}\right)$ $- \frac{2gr}{2gr} + \frac{2gr^{4}}{2gr} + \frac{2gr}{2gr}$	1 mark for separating and integrating w.r.t. time	Not many achieved these marks. Careful algebra required. Note displacement is to $4r$ not
	$=\frac{-3}{3}+\frac{3}{3x^3}=\frac{-3}{3}$ $=\frac{2gr^4}{3x^3}$	1 mark for applying correct bounds or	3 <i>r</i>
	$v = \frac{dx}{dt} = \frac{r^2}{x^{\frac{3}{2}}} \sqrt{\frac{2g}{3}}$	finding constant to get result	
	$t = \frac{1}{r^2} \sqrt{\frac{3}{2g}} \int_r^{4r} x^{\frac{3}{2}} dx$		
	$=\frac{1}{r^{2}}\sqrt{\frac{3}{2g}} \times \frac{2}{5} \left[x^{\frac{5}{2}}\right]_{r}^{4r}$		
	$=\frac{1}{r^2}\sqrt{\frac{3}{2g}\times\frac{2}{5}\left(32r^{\frac{5}{2}}-r^{\frac{5}{2}}\right)}$		
	$=\frac{31}{5}\sqrt{\frac{6r}{g}}\ seconds$		
	· ·		

	ar - 2k (1 - 1)	1 mark far analying a -	
v	$v^2 = \frac{g_1}{2} + \frac{2\kappa}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$	1 mark for applying v =	
	$3 3 (x^3 r^3)$	0	
	$2gr^4$ gr		
	$=\frac{1}{3x^3}-\frac{1}{3}$	1 mark for finding	
	Max height occurs when $v = 0$	distance	
	$2ar^4$ ar		
	$\frac{-3}{2} - \frac{3}{2} = 0$		
	$3x^3 - 2x^3$		
	$x^{*} - 2I^{*}$		
	$x = \sqrt[n]{2r}$		
	Distance travelled = $2 \times (max \ height - r)$		
	$x = 2r(\sqrt[3]{2} - 1)$ metres		
h	r ^e	1 mark for integrating by	
U U	$I_n = \int x(\ln x)^n dx$		
	J_1	parts	
	$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1$		
	$=\frac{1}{2}[x^{-}(\ln x)^{-}]_{1}^{2} - \int_{x} \frac{1}{2}x \frac{1}{x} dx$	1 mark for correct	
	$1 \qquad n c^e$	bounds and simplifying	
	$=\frac{1}{2}(e^{2}\ln e - 1^{2}\ln 1) - \frac{\pi}{2}\int x(\ln x)^{n-1}dx$		
	$Z \qquad Z \qquad Z \qquad J_1$	1 mark for simplifying to	
	$e^2 n_1$	recurrence relation with	
	$-\frac{1}{2}-\frac{1}{2}I_{n-1}$	working	
	- <i>P</i>	working	
с	$V = \pi \int v^2 dx$	1 mark for finding	Please check formulas from ext
	$\int_{1}^{1} f^{2} dx$	volume as a correct	1 material.
	$\int_{a}^{b} (1-x^2) dx$	integral	
	$=\pi \int x (\ln x)^2 dx$		
	e^{2} 2	1 mark for result	
	$=\pi \frac{1}{2} - \frac{1}{2}\pi I_1$ from (b)		
	$e^2\pi$ \int^e , ,		
	$= \frac{1}{2} - \pi \int x \ln x dx$		
	$a^2\pi$ $(a^2 1)$		
	$=\frac{e}{m}-\pi\left(\frac{e}{m}-\frac{1}{m}I_{0}\right)$		
	$2 \left(2 2 0 \right)$		
	$\pi \int_{-\infty}^{e} dx$		
	$=\frac{1}{2}\int_{a}^{b}xdx$		
	$-\frac{1}{2}$		
	$=\frac{n}{2}\left \frac{x}{2}\right $		
	2 [2] ₁		
	$e^2 - 1$		
	$=$ $-\frac{1}{4}\pi$ units ²		
	1		
			1

15ai	E = (-2, 4, 3)	1 mark for midpoint	
	F = (6, -4, -5) Let M be midpoint between E and F $M = \left(\frac{-2+6}{2}, \frac{4-4}{2}, \frac{3-5}{2}\right)$ $= (2, 0, -1)$ $\overrightarrow{OM} = \begin{pmatrix} 2\\ 0\\ -1 \end{pmatrix}$	1 mark for direction vector, with sufficient reasoning	
	For points on the line to be equidistant from <i>E</i> and <i>F</i> , direction vector must be perpendicular to \overrightarrow{EF} $\overrightarrow{EF} = \begin{pmatrix} 8 \\ -8 \\ -8 \end{pmatrix}$ $\begin{pmatrix} 8 \\ -8 \\ -8 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 8 + 0 - 8$		
	$= 0$ Hence, $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ is perpendicular to \overrightarrow{EF} and points on the line $m = \begin{pmatrix} 2\\0\\-1 \end{pmatrix} + \alpha \begin{pmatrix} 1\\0\\1 \end{pmatrix}$ are equidistant from \overrightarrow{EF}		
ii	Skew lines are not parallel and do not intersect For parallel lines, direction vectors must be parallel. i.e. $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$	1 mark for dealing with parallel lines, with reasoning	Mostly well done
	Considering x components: $1 = \lambda \times -1$ $\lambda = -1$ Considering y components: $0 = 2\lambda$ $\lambda = 0$	1 mark for equating lines 1 mark for finding contradiction	
	$\neq -1$ Hence, the direction vectors are not paralle and the lines are not parallel.		
	For point of intersection: $\begin{pmatrix} 2\\0\\-1 \end{pmatrix} + \alpha \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\-2\\-2 \end{pmatrix} + \beta \begin{pmatrix} -1\\2\\1 \end{pmatrix}$		

	This gives the following equations:		
	$2 + \alpha = 1 - \beta(1)$		
	$0 = -2 + 2\beta(2)$		
	0 = 2 + 2p(2) -1 + $\alpha = -2 + \beta(3)$		
	-1 + u = -2 + p(3)		
	$\rho = 1$		
	$\beta = 1$		
	$2 + \alpha = 1 - 1$		
	$\alpha = -2$		
	Check in (3)		
	LHS = -1 - 2		
	= -3		
	RHS = -2 + 1		
	= -1		
	$\neq LHS$		
	Hence, the lines do not intersect.		
	Thus, the lines are skew.		
iii	Consider the points P on m and O on n:	1 mark for finding \overrightarrow{RO} or	Less well done.
		I mark for finding PQ of	Little reasoning provided
	$P = (2 + \alpha, 0, -1 + \alpha)$	equivalent	
	$Q = (1 - \beta, -2 + 2\beta, -2 + \beta)$		
	$\overrightarrow{\mathbf{n}}$ $\begin{pmatrix} -1-\beta-\alpha\\ 2+\beta\alpha \end{pmatrix}$		
	$PQ = \begin{pmatrix} -2 + 2\beta \\ -2 + 2\beta \end{pmatrix}$	1 mark for finding α and	
	$(-1 + \beta - \alpha)$	eta or equivalent	
	For shortest distance, \overrightarrow{PQ} must be perpendicular to both m and n		
	$(-1-\beta-\alpha)$ (1)	1 mark for distance	
	$\begin{pmatrix} 1 & p & a \\ -2 + 2\beta & 1 & 0 \end{pmatrix} = 0$		
	$\begin{pmatrix} 2 + 2p \\ 1 + R \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$		
	$\frac{1+p-a}{1-a} = 0$		
	-1 - p - a - 1 + p - a = 0		
	$\alpha = -1$		
	(1 P + 1)		
	$\overrightarrow{\mathbf{p}}$ $\begin{pmatrix} -1-p+1\\ 2+2q \end{pmatrix}$		
	$PQ = \begin{pmatrix} -2 + 2\beta \\ -2 + 2\beta \end{pmatrix}$		
	$(-1+\beta+1)$		
	$\begin{pmatrix} -\beta \\ -\beta \end{pmatrix}$		
	$= \left(-2+2\beta\right)$		
	β /		

		$\begin{pmatrix} -\beta \\ -2+2\beta \\ \beta \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = 0$ $\beta - 4 + 4\beta + \beta = 0$ $\beta = \frac{2}{3}$		
	Minimum distance	$\overrightarrow{PQ} = \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$		
		$\left \overrightarrow{PQ} \right = \left \begin{pmatrix} -\frac{2}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \right $		
		$= \sqrt{\frac{4}{9} + \frac{4}{9} + \frac{4}{9}} = \frac{2\sqrt{3}}{3}$		
bi		$ma = m\frac{dv}{dt} = F - kv$ $t = -\frac{m}{k}\int_{0}^{v} -\frac{k}{F - kv}dv$	1 mark for system of motion and integrating w.r.t. <i>v</i>	
		$= -\frac{m}{k} [\ln F - kv]_0^v$ $= -\frac{m}{k} \ln \left \frac{F - kv}{F} \right $ $= -\frac{m}{k} \ln \left 1 - \frac{kv}{F} \right $ $t \to \infty \operatorname{as} 1 - \frac{kv}{V} \to 0 \text{ i.e. } \frac{kv}{V} \to 1$	1 mark for finding limit as $t \to \infty$ 1 mark for result with sufficient working	
		Therefore, limiting speed is $v_T = \frac{F}{k}$ $\frac{1}{2}v_T = \frac{F}{2k}$		

	$t = -\frac{m}{k} \ln \left 1 - \frac{k \frac{F}{2k}}{F} \right $ $= -\frac{m}{k} \ln \frac{1}{2}$ $= \frac{m}{k} \ln 2$		
	$ma = mv \frac{dv}{dx} = -F - kv$ $\int_{0}^{x} dx = -m \int_{\frac{F}{2k}}^{0} \frac{v}{F + kv} dv$ $x = -\frac{m}{k} \int_{\frac{F}{2k}}^{0} \frac{F + kv - F}{F + kv} dv$ $= -\frac{m}{k} \int_{\frac{F}{2k}}^{0} 1 - \frac{F}{F + kv} dv$ $= -\frac{m}{k} \int_{\frac{F}{2k}}^{0} 1 - \frac{F}{k} \times \frac{k}{F + kv} dv$ $= -\frac{m}{k} \left[v - \frac{F}{k} \ln F + kv \right]_{\frac{F}{2k}}^{0}$ $= -\frac{m}{k} \left(\left(-\frac{F}{k} \ln F \right) - \left(\frac{F}{2k} - \frac{F}{k} \ln \left(F + \frac{F}{2} \right) \right) \right)$ $= \frac{mF}{k^{2}} \ln F + \frac{mF}{2k^{2}} - \frac{mF}{k^{2}} \left(\ln \frac{3F}{2} \right)$ $= \frac{mF}{2k^{2}} \left(1 + 2 \ln F - 2 \ln \left(\frac{3F}{2} \right) \right)$ $= \frac{mF}{2k^{2}} \left(1 + 2 \ln F - (2 \ln F + 2 \ln \frac{3}{2}) \right)$	 1 mark for system of motion and defining integral 1 mark for integrating w.r.t. v 1 mark for applying bounds and finding result with sufficient working 	Done well. Some setting out concerns
с	For the number $N = abcd = 1000a + 100b + 10c + d$ We know that $(100a + 10b + c) - 9d = 13k$ for some integer k. $-(1)$	1 mark writing initial given in algebra	Very limited argument, lots of algebra. Not great, needs more
	Now: N = 1000a + 100b + 10c + d $N = 10(100a + 10b + c) + d$	2 marks resolving N in terms of initial given result	reasoning.

	From (1), $(100a + 10b + c) = 13k + 9d$	3 marks using initial	
	N = 10(13k + 9d) + d	given result to	
	= 130k + 91d	successfully express N as	
	= 13(10k + 7d)	13m and hence	
	which is divisible by 13.	conclude it is divisible by	
		13, with reasoning.	
16ai	$z^n = \cos(n\theta) + i\sin(n\theta)$	1 mark for result with	
	$(\bar{z})^n = (z^n) = \cos(n\theta) - i\sin(n\theta)$	sufficient working	
	$z^{n} + (z)^{n} = \cos(n\theta) + i\sin(n\theta) + \cos(n\theta) - i\sin(n\theta)$		
	$= 2\cos(n\theta)$		
	$\pi^{\mathbb{R}} = \left(\pi^{\mathbb{R}} - \cos(n\theta) + i\sin(n\theta) \right) = \left(\cos(n\theta) - i\sin(n\theta) \right)$		
	$2 = (2) = \cos(n\theta) + i \sin(n\theta) - (\cos(n\theta) - i \sin(n\theta))$ $- 2i \sin(n\theta)$		
	$-2i\sin(ib)$		
li	$(\cos\theta \sin\theta)^n$	1 mark for factorising	
	$(\cot\theta + i)^n = \left(\frac{\sin\theta}{\sin\theta} + \frac{\sin\theta}{\sin\theta}i\right)$	sin ⁿ θ	
	1		
	$=\frac{1}{\sin^{n}\theta}(\cos(n\theta)+i\sin(n\theta))$	1 mark for relating to	
	Similarly,	part (i) and finding result	
	$(\cot \theta i)^n = (\cos \theta \sin \theta i)^n$	with sufficient working	
	$(\cot\theta - i)^{\prime} - (\frac{1}{\sin\theta} - \frac{1}{\sin\theta}i)$		
	$=\frac{1}{-1}(\cos(n\theta)-i\sin(n\theta))$		
	$\sin^n \theta$		
	1		
	$(\cot\theta + i)^n - (\cot\theta - i)^n = \frac{1}{\sin^n \theta} \left(\cos(n\theta) + i\sin(n\theta) - (\cos(n\theta) - i\sin(n\theta)) \right)$		
	$=\frac{1}{\sin^n\theta}2i\sin(n\theta)$		
lii	When $x = \cot \theta$,	1 mark for equation in	
	Solutions occur when $2i \sin(n\theta) = 0 + 0i$,	$sin(n\theta)$	
	$\sin(n\theta) = 0$		
	$n\theta = 0, \pi, 2\pi,, (n-1)\pi$	1 mark for solutions to θ	
	$\theta = 0, \frac{\pi}{2\pi}, \frac{2\pi}{2\pi}, \dots, \frac{(n-1)\pi}{2\pi}$		
	$n^{n}n^{n} - n$	1 mark for solutions for	
	$\pi 2\pi (n-1)\pi$	x, including reasoning	
	$\theta = \frac{n}{n}, \frac{2n}{n}, \dots, \frac{(n-1)n}{n}$	for excluding cot 0	
	n n n		

	Hence, solutions are $x = \cot \frac{\pi}{n}$, $\cot \frac{2\pi}{n}$,, $\cot \frac{(n-1)\pi}{n}$		
	ALTERNATE METHOD		
	$(x+i)^{n} = (x-i)^{n}$ $\left(\frac{x+i}{x-i}\right)^{n} = 1$ $\frac{x+i}{x-i} = e^{i\alpha}, \text{ where } \alpha = \frac{2k\pi}{n}, k = 0, 1, 2, 3,, n-1$ $x+i = xe^{i\alpha} - ie^{i\alpha}$ $x - xe^{i\alpha} = -ie^{i\alpha} - i$ $x(1-e^{i\alpha}) = -i(e^{i\alpha} + 1)$ $x = i\frac{e^{i\alpha} + 1}{e^{i\alpha} - 1} \div \frac{e^{i\alpha}}{e^{i\alpha}}$ $= i\frac{2\cos \frac{2}{2}}{2i\sin \frac{2}{2}}$ $= \cot \frac{2}{2}$ $(k\pi)$	 1 mark for finding equation to power of n 1 mark for finding solution to nth root with x as the subject 1 mark for simplifying and finding result 	
iv	Using binomial expansion	1 mark for showing	This type of result needs a lot of
	$(x+i)^{n} = x^{n} + \binom{n}{1} x^{n-1}i - \binom{n}{2} x^{n-2} - \binom{n}{3} x^{n-3}i + \binom{n}{4} x^{n-4} \dots (1)$ $(x-i)^{n} = x^{n} - \binom{n}{1} x^{n-1}i - \binom{n}{2} x^{n-2} + \binom{n}{3} x^{n-3}i + \binom{n}{4} x^{n-4} \dots (2)$	binomial expansions with sufficient working	care when writing the expansion clearly.
	$(1) - (2)$ $(x + i)^{n} - (x - i)^{n} = x^{n} + {\binom{n}{1}} x^{n-1}i - {\binom{n}{2}} x^{n-2} - {\binom{n}{3}} x^{n-3}i + {\binom{n}{4}} x^{n-4} \dots$ $-x^{n} + {\binom{n}{1}} x^{n-1}i + {\binom{n}{2}} x^{n-2} - {\binom{n}{3}} x^{n-3}i - {\binom{n}{4}} x^{n-4} \dots$ $= 2 {\binom{n}{1}} x^{n-1}i - 2 {\binom{n}{3}} x^{n-3}i + 2 {\binom{n}{5}} x^{n-5}i - 2 {\binom{n}{7}} x^{n-7}i \dots$ $= 2i {\binom{n}{1}} x^{n-1} - {\binom{n}{3}} x^{n-3} + {\binom{n}{5}} x^{n-5} - {\binom{n}{7}} x^{n-7} \dots$		You need to give sufficient terms to demonstrate pattern.

v	Note that:	1 mark for noting	Poorly done. Need to review
	Sum of the square of the roots	expression for sum of	roots of polynomials.
	= square of the sum of the roots $-2 \times$ sum of the roots two at a time	the square of the roots	
	$\cot^{2}\frac{\pi}{n} + \cot^{2}\frac{2\pi}{n} + \cot^{2}\frac{3\pi}{n} + \dots + \cot^{2}\frac{(n-1)\pi}{n} = 0 - 2 \times \frac{-\binom{n}{3}}{\binom{n}{1}}$	1 mark for evaluating and simplifying	
	$= 2 \frac{\frac{n!}{3!(n-3)!}}{\frac{n!}{1!(n-1)!}}$		
	$=2\frac{(n-1)!}{2!(n-1)!}$		
	$=\frac{\frac{3!(n-3)!}{(n-1)(n-2)}}{\frac{2}{n-1}}$		
bi	$x = vt \cos \alpha$	1 mark for eliminating	
	$t = \frac{x}{v \cos \alpha} $ (1)	parameter and finding result with sufficient	
	$y = vt\sin\alpha - \frac{1}{2}gt^2 (2)$	working	
	Sub (1) in (2)		
	$y = \frac{vx\sin\alpha}{v\cos\alpha} - \frac{1}{2}g\left(\frac{x^2}{v^2\cos^2\alpha}\right)$		
	$= x \tan \alpha - \frac{g x^2 \sec^2 \alpha}{2v^2}$		
ii	Path of projectile:	1 mark for substituting	Very poorly done, although
	$y_{proi} = x \tan \alpha - \frac{g x^2 \sec^2 \alpha}{2x^2}$	to find point of	potentially this was due to
	$gx \sec^2 \alpha$		of the test. Students should
	$y_{proj} - \tan u - \frac{v^2}{v^2}$	1 mark for taking	have achieved a stronger result
	Equation of inclined plane	derivatives as negative	for this question given the
	$y_{pla} = x \tan \beta$ $y'_{nla} = \tan \beta$	reciprocals	relative difficulty.
	Point of intersection occurs when $y_{nroi} = y_{nlg}$	1 mark for substituting	
	$gx^2 \sec^2 \alpha$	and finding result	
	$x \tan \alpha - \frac{1}{2v^2} = x \tan \beta$		
	$x\left(\frac{gx\sec^2\alpha}{2\nu^2} + (\tan\beta - \tan\alpha)\right) = 0$		

For $x \neq 0$	
$\frac{gx \sec^2 \alpha}{2v^2} + (\tan \beta - \tan \alpha) = 0$ $x = \frac{2v^2(\tan \alpha - \tan \beta) \cos^2 \alpha}{g} (3)$	
For intersection at right angle $y'_{proj} = -\frac{1}{y'_{pla}}$	
$\tan \alpha - \frac{gx \sec^2 \alpha}{v^2} = -\cot \beta$	
Sub (3)	
$\tan \alpha - \frac{g \sec^2 \alpha}{v^2} \times \frac{2v^2 (\tan \alpha - \tan \beta) \cos^2 \alpha}{g} = -\cot \beta$	
$\tan \alpha - 2(\tan \alpha - \tan \beta) = -\cot \beta$	
$2\tan\beta - \tan\alpha = -\cot\beta$	
$\tan \alpha = \cot \beta + 2 \tan \beta$	